Peer Reviewed
- Bayesian inference of structured latent spaces from neural population activity with the orthogonal stochastic linear mixing model. Meng, R., Bouchard, K.E., PLoS Computational Biology, April, 2024.
- BigNeuron: A resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets. ….; Bouchard, K.E., …; Nature Methods, June, 2023
- DL-TODA: A Deep Learning Tool for Omics Data Analysis, Cecile M. Cres, Andrew Tritt, Kristofer E. Bouchard, Ying Zhang, Biomolecules; March, 2023
- Perspectives for self-driving labs in synthetic biology. Garcia-Martin, H., Radivojevic, T., Zucker, J., Bouchard, K.E., et al., Current Opinion in Biotechnology, Feb., 2023.
- The Neurodata Without Borders ecosystem for neurophysiological data science. Rubel, O., ….., Bouchard, K.E. eLife
- Ladd, A., Balewski, J., Kim, K.G., Bouchard, K.E., Ben-Shalom, R., Scaling and Benchmarking an Evolutionary Algorithm for Constructing Biophysical Neuronal Models. Ladd, A., Balewski, J., Kim, K.G., Bouchard, K.E., Ben-Shalom, R., Frontiers in Neuroinformatics. Jun., 2022.
- NeuroGPU: Accelerating multi-compartment, biophysically detailed neuron simulations on GPUs, Ben-Shalom, R., …, Bouchard, K.E., Bender, K., J. Neurosci. Methods, Jan., 2022.
- Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Networks. Meng, R., Lee, H., Bouchard, K.E.; Conference of the International Federation of Classification Societies, 2022.
- Numerical Characterization of Support Recovery in Sparse Regression with Correlated Design. Kumar, A., Bouchard, K.E.; Communications in Statistics-Simulation and Computation, 2022.
- Hangul Fonts Dataset: a Hierarchical and Compositional Dataset for Investigating Learned Representations. Livezey, J Livezey, J.A., Hwang, A., Yeung, J., Bouchard, K.E.; International Conference on Image Analysis and Processing, 2021
- Achieving Sparsity in Bayesian Vector Autoregressions with Three-Parameter-Beta-Normal Prior. Meng, R., Rangarajan, H., Bouchard, K.E., Seminar on Bayesian Inference in Econometrics and Statistics, 2021
- Critical Point-Finding Methods Reveal Gradient-Flat Regions of Deep Network Losses. Frye, C.G., Simon, J., Wadia, N.S., Ligeralde, A., DeWeese, M.R., Bouchard, K.E., Neural Computation, 2021
- Sparse and Low-bias Estimation of High Dimensional Vector Autoregressive Models. Ruiz, T., Bhattacharyya, S., Balasubramanian, M., Bouchard, K.E., Learning for Dynamics and Control, 2020.
- Scaling of Union of Intersections for Inference of Granger Causal Networks from Observational Data. Balasubramanian, M, Ruiz, T.D., Cook, B., Prabhat, Bhattacharyya, S., Shrivastava, A., Bouchard, K.E.; International Parallel and Distributed Processing Symposium, 2020
- HDMF: Hierarchical Data Modeling Framework for Modern Science Data Standards. Tritt, A., Rübel, O., Dichter, B., Ly, R., Chang, E., Kang, D., Frank, L., Bouchard, K.E.; IEEE Big Data, 2019.
- PyUoI: The Union of Intersections Framework in Python. Journal of Open Source Software, Sachdeva, P., Livezey, J., Tritt, A.J., Bouchard, K.E. 4(44), 1799, 2019
- Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis. Livezey, J, Clark, D.G., Bouchard, K.E.; NeurIPS 2019.
- Deep-learning as a data analysis tool for systems neuroscience. Livezey, J.*, Bouchard, K.E.*$, Chang, E.F.$; PLoS Computational Biology, 15(9): e1007091. Sept, 2019. *: co-first authors; $: co-senior authors
- Sparse, Predictive, and Interpretable Functional Connectomics with UoI-Lasso. P.S. Sachdeva, S. Bhattacharyya, Bouchard, K.E.; 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2019).
- International Neuroscience Initiatives through the Lens of High-Performance Computing. Bouchard, K.E.*, et al., IEEE Computer, 51(4):50-59;
- Union of Intersections (UoI) for Interpretable Data Driven Discovery and Prediction. Bouchard, K.E., Bujan, A.F., Roosta, F., Prabhat, Snijders, A., Mao, J-H., Chang, E.F., Mahoney, M., Bhattacharyya, S.; Advances in Neural Information Processing Systems, 2017. Available on-line.
- UoI-NMFcluster: A Robust Non-negative Matrix Factorization Algorithm for Improved Parts-Based Decompositions from Noisy Data. Ubaru, S., Wu, K.J., Saad, Y., Bouchard, K.E.; 16th IEEE International Conference on Machine Learning and Applications. DOI: 1109/ICMLA.2017.0- 152; Best Paper Award. 2017.
- Sparse coding of ECoG signals identifies interpretable components for speech control in human sensorimotor cortex. Bouchard, K.E., Bujan, A.F., Chang, E.F., Sommer, F.T.; IEEE, Engineering in Medicine and Biology, 3636-3639; Aug., 2017.
- Multi-scale visual analysis of time-varying electrocorticography data via clustering of brain regions. Murugesan, S., Bouchard, K.E., Chang, E., Dougherty, M., Hamann, B., & Weber, G. H. (2017). BioMedical Central Bioinformatics, 18(6) 1- 45; 2017.
- Neuromorphic Kalman filter implementation in IBM’s TrueNorth. Carney, R., Livezey, J., Clark, D., Calafiura, P., Donofrio, D., Bouchard, K.E., & Garcia- Sciveres, M. (2017). In Phys. Conf. Ser.(Vol. 898, p. 042021).
- High-Performance Computing in Neuroscience for Data-Driven Discovery, Integration, and Dissemination. Bouchard, K.E., et al., Neuron, 92(3):628-631; 2016.
- Usage Pattern-Driven Dynamic Data Layout Reorganization. Tang, H., Byna, S., Harenberg, S., Zou, X., Zhang, W., Wu, K., Dong, B., Rubel, O., Bouchard, K.E., Klasky, S., and Samatova, N.F.; IEEE/ACM Cluster, Cloud, and Grid Computing, DOI:1109/CCGrid.2016.15; 2016.
- Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity. Mururgesan, S.,Bouchard, K.E., Brown, J.A., Hamann, B., Seeley, W.W., Trujillo, A., Weber, G. H.; IEEE/ACM Transactions on Computational Biology and Bioinformatics, (99): 805- 818; May, 2016.
- Methods for Specifying Scientific Data Standards and Modeling Relationships with Applications to Neuroscience. Rübel, O., Dougherty, M., Prabhat, Denes, P., Conant, D., Chang, E.F., Bouchard, K.E.; Front Neuroinform. 10: 48; , 2016.
- Hierarchical spatio-temporal visual analysis of cluster evolution in electrocorticography data. Murugesan, S., Bouchard, K. E., Chang, E. F., Dougherty, M., Hamann, B. and Weber, G. H.; Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, 630-639; Oct., 2016.
ArXiv only
Recent Comments